欢迎来到朵拉利品网
知识中心
资讯
  • 资讯
  • 产品
  • 供应商
您的位置: 朵拉利品网 >  知识中心 > 内插法计算公式 内插法的计算方法是什么?
内插法计算公式 内插法的计算方法是什么?
2021-03-20 02:25:22 来源:朵拉利品网

1, 内插法的计算方法是什么?



内插法是用一组已知的未知函数的自变量的值和与它对应的函数值来求一种求未知函数其它值的近似计算方法,是一种未知函数,数值逼近求法,天文学上和农历计算中经常用的是白塞尔内插法,可参考《中国天文年历》的附录。
符合内插法条件的一组相关联数据列表 其中:B3、D3、B4、C4、D4均为已知数。
内插法计算公式(对上述表达后整理得出)
X=(D3*(C4-B4)+B3*(D4-C4))/(D4-B4)
实例一:已知B6080型牛头刨床其规格为最大刨削长度为800毫米,价格为54000元;B60100型牛头刨床其规格为最大刨削长度为1000毫米,价格为65000元,求B690型其规格为最大刨削长度为900毫米的牛头刨床的价格(X)。公式:
X=(D3*(C4-B4)+B3*(D4-C4))/(D4-B4)
=(65000*(900-800)+54000*(1000-900))/(1000-800)
=11900000/200=59500元

4, 插值法公式



以下是我的个人观点:
首先你得分清楚插值和拟合这两个的区别,
拟合是指你做一条曲线或直线,使得你的数据点跟这条线的“误差”最小。注意,这个要求并不要求所有的数据点在我们的拟合曲线上。
插值是指你做一条曲线或直线完全经过这些点,就是说数据点一定都要在插值曲线上。
插值也有好多种:比如拉格朗日插值,分段插值,样条插值(样条插值要求你还要知道这些数据点的一阶导数)
我们知道两点确定一条直线(一次多项式),三点确定一条抛物线(二次多项式),试想一下有10个点是不是可以确定一个9次多项式(9次多项式里面还有一个常数项,就是10个未知数,我们有10个数据点,刚好可以求解)
(**)拉格朗日插值就是上面的这种插值。但是它就是把这些多项式系数重新表示了一下(就是不用去求上面所说的10个系数)。你求出这些系数后,只要将你想要的x的值往里一代,马上就得到你想要的函数值。但这种插值在头尾附近会出现一些不好的振荡现象(龙格现象)
(**)分段插值,还是按照上面的原则,比如说,我两个点两个点地确定一条直线(比如1,2点连起来,2,3点连起来),最后所有直线的集合(这时应当是一系列的折线)这个分段函数也是经过所有的数据点。当然你也可以三个点三个点地确定一条抛物线。用这一方面时,你要先确定你想要的x值在哪一个区间里,然后用这一区间的表达式来计算出函数值就可以了。本方法不会出现龙格现象
(***)样条插值,上面提到分段插值是一系列折线,折线使得不光滑,样条就是用其导数值,使得它们变光滑。
下面说计算方法吧!至于表达式,你如果理解了上面,你去找本“计算方法”或“数值计算”的书,上面都有表达式。应当不难。
另外你还可以借助于MATLAB这样的软件来计算。
比如你的原始数据是X,Y,你想要求y(x=5)的值
X=[2,6,10,14,18,22,26,30,34,38,41,42,45,49,53,57,61,65,69,73,77,81]; %自变量的值
Y=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]; %自变量相应的函数值
X0=5; %你想要的点的值
N=22; %这个是点的个数
Doc=2; %分段插值中你想用几个点插值
你可以用下面的语句得到y(x=5);
Y1=lagrange(X,Y,X0) %拉格朗日插值
Y2=interp1(X,Y,X0,"linear") %分段两点线性插值
Y2=interp1(X,Y,X0,"spline") %分段两点线性插值
可能说的不好,你如果想系统地学点,可能得看一下相关的书。

5, 用内插法怎么计算



答案等于:0.4804
K0+262.276 深度=0.514-(262.276-260)*(0.514-0.472)/(280-260)=0.5092204
K0+262 深度=0.514-(262-260)*(0.514-0.472)/(280-260)=0.5098
K0+276 深度=0.514-(276-260)*(0.514-0.472)/(280-260)=0.4804
内插法
又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。我国古代早就发明了内插法,当时称为招差术,如公元前1世纪左右的《九章算术》中的“盈不足术”即相当于一次差内插(线性内插);隋朝作《皇极历》的刘焯发明了二次差内插(抛物线内插);唐朝作《太衍历》的僧一行又发明了不等间距的二次差内插法;元朝作《授时历》的郭守敬进一步发明了三次差内插法。在刘焯1000年后,郭守敬400年后,英国牛顿才提出内插法的一般公式。

名词解释


插值

在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 插值:用来填充图像变换时像素之间的空隙。

10

10(外文名:ten),相当于汉字“十”,是位于9与11之间的自然数、正整数。在十进制中,10是最小的两位数,写法是一个1后面加一个0,是一个合数,有4个因数(约数),也是一个有理数。

分段

分段可以是武术套路术语,也可以是计算机网络术语等。