1, 莫比乌斯指环的介绍
象征着循环往复、永恒、无限的。因此常被用于各类标志设计。奇妙之处:一、莫比乌斯环只存在一个面。二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、把纸带的端头扭转了四次再结合的环(并不是莫比乌斯带,在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的,从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境。
2, 莫比乌斯环象征什么
メビウス就是英语Mebius外来语拼出来的那个轮就是戒指的意思,mebius, 日文科学界译法是メビウス,世界公认通译的(书写为黑本式罗马拼音,其他类似的还有拉丁文和法文,但很可惜没有中文);中国科学界译法是莫比乌斯,遵照最早定义莫比乌斯环的著作译文 Mebius,来源于Mobius,数学上的莫比乌斯带是Mobius strip,它是一种只有一个面的表面,有循环的意思 原文是 mebius环其实就是“∞”这个符号,也就是“无限”的符号,日语中的mebius一般用来表示没有起点,也没有终点,没有表面也没有里面,你中有我,我中有你的意思
3, 什么是莫比乌斯环?
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”(也就是说,它的曲面只有一个)。莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决。比如在普通空间无法实现的"手套易位"问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。参考资料:百度百科——莫比乌斯带
4, 莫比乌斯指环的奇妙之处
是莫比乌斯环吧~~~公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。莫比乌斯带是一种拓扑图形,什么是拓扑呢?拓扑所研究的是几何图形的一些性质,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。
名词解释
莫比
莫比,1965年9月11日生于美国纽约哈林区,他的作品始终游走于流行与电子之间,音乐路线迎合了大多数年轻人的聆听品位。他在电子乐界颇有建树,兼任制作人、创作家、DJ,曾是个朋克乐手,甚至还是一家素食餐馆的老板。
乌斯
乌斯,1977年9月23日出生于爱沙尼亚,男子足球运动员。