欢迎来到朵拉利品网
知识中心
资讯
  • 资讯
  • 产品
  • 供应商
您的位置: 朵拉利品网 >  知识中心 > 勾股定理常用11个公式 初中数学勾股定理的公式有哪些
勾股定理常用11个公式 初中数学勾股定理的公式有哪些
2020-05-24 20:54:14 来源:朵拉利品网

1, 初中数学勾股定理的公式有哪些



直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:
搜狗百科-勾股定理

2, 勾股定理常用11个公式是什么



勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”.
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现.据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”.
勾股定理指出:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方.
也就是说,
设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一.
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c).例如(3,4,5)就是一组勾股数组.
由于方程中含有3个未知数,故勾股数组有无数多组.
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义.即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和.
至于常用的公式,请参考链接网页链接
求采纳,谢谢哦!

3, 勾股定理常用的数字



勾股定理是初二数学中比较难的部分,下面,初三网小编为大家整理一下初二数学勾股定理常用的公式:
1常见的勾股数及几种通式有
(1)(3,4,5),(6,8,10)……
3n,4n,5n(n是正整数)
(2)(5,12,13),(7,24,25),(9,40,41)……
2n+1,2n^2+2n,2n^2+2n+1(n是正整数)
(3)(8,15,17),(12,35,37)……
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)
2勾股定理常见知识点
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180"
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
3勾股定理内容
直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a²+b²=c²。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。
4勾股定理定理
如果直角三角形两直角边分别为a,b,斜边为C,那么a^2+b^2=c^2。
即直角三角形两直角边长的平方和等于斜边长的平方。

4, 勾股定理的公式



勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。
勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理的公式:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 和 ,斜边长度是 ,那么可以用数学语言表达:
勾股定理是余弦定理中的一个特例。

名词解释


勾股定理

勾股定律(Pythagorean Theorem)又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。

定理

定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些正在加载是正在加载,某些正在加载是正在加载,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。 如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。 在命题逻辑,所有已证明的叙述都称为定理。

直角

《几何原本》中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。角度比直角小的称为锐角,比直角大而比平角小的称为钝角。