欢迎来到朵拉利品网
知识中心
资讯
  • 资讯
  • 产品
  • 供应商
您的位置: 朵拉利品网 >  知识中心 > 任意角三角函数的定义是 【任意角的三角函数的定义是什么?】作业帮
任意角三角函数的定义是 【任意角的三角函数的定义是什么?】作业帮
2020-03-09 04:26:33 来源:朵拉利品网

1, 【任意角的三角函数的定义是什么?】作业帮



你好
任意角的三角函数的定义:
在高中学习三角函数时,我们将要把锐角扩充到任意角,那么只在直角三角形中定义三角函数就不科学,不方便了.因此,对于任意角的三角函数,我们虽然仍在单位圆中来下定义,但是其含义就发生了微妙的变化.
如图所示:
在直角坐标系中,⊙O的半径为1,任意角α的三角函数定义如下:
正弦:∠α与单位圆的交点A的纵坐标与圆半径的比值叫做正弦,表示为:sinα=Ay/OA=Ay;其中Ay 叫做正弦线.
余弦: ∠α与单位圆的交点A的横坐标与圆半径的比值叫做余弦,表示为:cosα=Ax/OA=Ax;其中Ax 叫做余弦线.
正切: ∠α与单位圆的交点A的纵坐标与横坐标的比值叫做正切,表示为:tanα=Ay/Ax;
余切: ∠α与单位圆的交点A的横坐标与纵坐标的比值叫做余切,表示为:cotα=Ax/Ay; ;
正割: 圆半径和∠α与单位圆的交点A的横坐标的比值叫做正割,表示为:secα=OA/Ax=1/Ax;
余割: 圆半径和∠α与单位圆的交点A的纵坐标的比值叫做余割,表示为:cscα=OA/Ay=1/Ay;

三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。


在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:
基本函数英文表达式语言描述正弦函数Sinesin θ=y/r角α的对边比斜边余弦函数Cosinecos θ=x/r角α的邻边比斜边 正切函数Tangenttan θ=y/x角α的对边比邻边余切函数Cotangentcot θ=x/y角α的邻边比对边正割函数Secantsec θ=r/x角α的斜边比邻边余割函数Cosecantcsc θ=r/y角α的斜边比对边注:tan、cot曾被写作tg、ctg,现已不用这种写法。
非常见三角函数
除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰:
函数名与常见函数转化关系正矢函数versin θ=1-cos θ余矢函数covers θ=1-sin θ半正矢函数havers θ=(1-cos θ)/2半余矢函数hacovers θ=(1-sin θ)/2外正割函数exsec θ=sec θ-1外余割函数excsc θ=csc θ-1

名词解释


函数

函数(function)在数学中为两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。 其定义通常分为传统定义和近代定义,前者从运动变化的观点出发,而后者从集合、映射的观点出发。其近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。函数概念含有三个要素:定义域A、值域C和对应法则f。

三角函数

三角函数(Trigonometric Functions)是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。 三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

斜边

斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。