欢迎来到朵拉利品网
知识中心
资讯
  • 资讯
  • 产品
  • 供应商
您的位置: 朵拉利品网 >  知识中心 > 扫描透射电子显微镜里的sei图像 扫描电子显微镜的像衬度是怎么形成的
扫描透射电子显微镜里的sei图像 扫描电子显微镜的像衬度是怎么形成的
2019-11-24 07:23:55 来源:朵拉利品网

2, 扫描电子显微镜和透射电子显微镜的效果有什么不同?



扫描电镜主要是电子束照射到样品后的二次电子成像,透射电镜的明场像是透射电子成像。
电子显微镜简称电镜,英文名Electron Microscope(简称EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。
电子显微镜由镜筒、真空装置和电源柜三部分组成。
镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。
电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有
时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。电子源是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏特之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。
样品可以稳定地放在样品架上,此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。
为什么要用荧光屏呢?因为人们的肉眼是看不见电子束的,所以要用荧光屏把电子束变成可见的光源,才能形成眼睛能看得见的像。
探测器用来收集电子的信号或次级信号。
真空装置用以保障显微镜内的真空状态,这样电子在其路径上不会被吸收或偏向,由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相联接。
透射式电子显微镜因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿,可以直接获得一个样本的投影。通过改变物镜的透镜系统人们可以直接放大物镜的焦点的像。由此人们可以获得电子衍射像。使用这个像可以分析样本的晶体结构。在这种电子显微镜中,图像细节的对比度是由样品的原子对电子束的散射形成的。由于电子需要穿过样本,因此样本必须非常薄。组成样本的原子的原子量、加速电子的电压和所希望获得的分辨率决定样本的厚度。样本的厚度可以从数纳米到数微米不等。原子量越高、电压越低,样本就必须越薄。样品较薄或密度较低的部分,电子束散射较少,这样就有较多的电子通过物镜光阑,参与成像,在图像中显得较亮。反之,样品中较厚或较密的部分,在图像中则显得较暗。如果样品太厚或过密,则像的对比度就会恶化,甚至会因吸收电子束的能量而被损伤或破坏。
透射电镜的分辨率为0.1~0.2nm,放大倍数为几万~几十万倍。由于电子易散射或被物体吸收,故穿透力低,必须制备更薄的超薄切片(通常为50~100nm)。
透射式电子显微镜镜筒的顶部是电子枪,电子由钨丝热阴极发射出、通过第一,第二两个聚光镜使电子束聚焦。电子束通过样品后由物镜成像于中间镜上,再通过中间镜和投影镜逐级放大,成像于荧光屏或照相干版上。中间镜主要通过对励磁电流的调节,放大倍数可从几十倍连续地变化到几十万倍;改变中间镜的焦距,即可在同一样品的微小部位上得到电子显微像和电子衍射图像。
扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了标本的表面结构。显像管的偏转线圈与样品表面上的电子束保持同步扫描,这样显像管的荧光屏就显示出样品表面的形貌图像,这与工业电视机的工作原理相类似。由于这样的显微镜中电子不必透射样本,因此其电子加速的电压不必非常高。
扫描式电子显微镜的分辨率主要决定于样品表面上电子束的直径。放大倍数是显像管上扫描幅度与样品上扫描幅度之比,可从几十倍连续地变化到几十万倍。扫描式电子显微镜不需要很薄的样品;图像有很强的立体感;能利用电子束与物质相互作用而产生的次级电子、吸收电子和X射线等信息分析物质成分。
扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。

3, 扫描电子显微镜与透射电子显微镜成像原理有何不同



象衬度
定义:象衬度是图象上不同区域间明暗程度的差别。由于图像上不同区域间存在明暗程度的差别即衬度的存在,才使得我们能观察到各种具体的图像。只有了解像衬度的形成机理,才能对各种具体的图像给予正确解释,这是进行材料电子显微分析的前提。
1、非晶样品的象衬度
非晶样品透射电子显微图象衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,即质量厚度衬度(质量厚度定义为试样下表面单位面积以上柱体中的质量),也叫质厚衬度。质厚衬度适用于对复型膜试样电子图象作出解释。质量厚度数值较大的,对电子的吸收散射作用强,使电子散射到光栏以外的要多,对应较安的衬度。质量厚度数值小的,对应较亮的衬度。
2、衍射衬度
对于晶体,若要研究其内部缺陷及界面,需把样品制成薄膜,这样,在晶体样品成象的小区域内,厚度与密度差不多,无质厚衬度。但晶体的衍射强度却与其内部缺陷和界面结构有关。由样品
强度的差异形成的衬度叫衍射衬度,简称衍衬。
晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度,称为衍射衬度。这种衬度对晶体结构和取向十分敏感,当试样中某处含有晶体缺陷时,意味着该处相对于周围完整晶体发生了微小的取向变化,导致了缺陷处和周围完整晶体具有不同的衍射条件,将缺陷显示出来。可见,这种衬度对缺陷也是敏感的。基于这一点,衍衬技术被广泛应用于研究晶体缺陷。
衍衬成像,操作上是利用单一透射束通过物镜光栏成明场像,或利用单一衍射束通过物镜光栏成暗场像。近似考虑,忽略双束成像条件下电子在试样中的吸收,明暗场像衬度是互补的。明场像和暗场像均为振幅衬度,即它们反映的是试样下表面处透射束或衍射束的振幅大小分布,而振幅的平方可以作为强度的量度,由此便获得了一幅通过振幅变化而形成衬度变化的图像。
3、相位衬度
如果所用试样厚度小于l00?,甚至30 ?。它是让多束衍射光束穿过物镜光阑彼此相干成象,象的可分辨细节取决于入射波被试样散射引起的相位变化和物镜球差、散焦引起的附加相位差的选择。它追求的是试样小原子及其排列状态的直接显示。
图所示是薄晶成象的情形。一束单色平行的电子波射入试样内,与试样内原子相互作用,发生振幅和相位变化。当其逸出试样下表面时,成为不同于原入射波的透射波和各级衍射波。由于试样很薄,衍射波振幅甚小,透射波振幅基本上与入射波振幅相同,非弹性散射可忽略不计。衍射波与透射波间的相位差为π/2。如果物镜没有象差,且处于正焦状态,而光阑也足够大,使透射波与衍射波得以同时穿过光阑相干。相干结果产生的合成波其振幅与入射波相同,只是相位位置 稍许不同。由于振幅没变,因而强度不变,所以没有衬度。要想产生衬度,必须引入一个附加相位,使所产生的衍射波与透射波处于相等的或相反的相位位置,也就是说, 让衍射波沿图X轴向右或向左移动π/2,这样,透射波与衍射波相干就会导致振幅增加或减少,从而使象强度发生变化,相位衬度得到了显示。
综上所述,三种衬度的不同形成机制,反映了电子束与试样物质原子交互作用后离开下表面的电子波,通过物镜以后,经人为地选择不同操作方式所经历的不同成像过程。在研究工作中,它们相辅相成,互为补充,在不同层次上,为人们提供不同尺寸的结构信息,而不是互相排斥

名词解释


衬度

衬度指的是图像上不同区域间存在的明暗程度的差异,也正是因为衬度,我们才能看到各种具体的图像。 成像衬度是光学显微镜的另一个关键问题,有些显微镜观察对象,如生物标本,其细节间亮度差别甚小,加之显微镜光学系统设计制造误差使其成像衬度进一步降低而难于分辨,此时,看不清物体细节,不是总放大倍率过低,也不是物镜数值孔径太小,而是由于像面衬度太低的缘故。

衍射

衍射(英语:diffraction),又称绕射,是指波遇到障碍物时偏离原来直线传播的物理现象。 在经典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播。假设将一个障碍物置放在光源和观察屏之间,则会有光亮区域与阴暗区域出现于观察屏,而且这些区域的边界并不锐利,是一种明暗相间的复杂图样。这现象称为衍射,当波在其传播路径上遇到障碍物时,都有可能发生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由于原子尺度的实际物体具有类似波的性质,它们也会表现出衍射现象,可以通过量子力学进行研究其性质。