1, 学习机器视觉发展前景如何
最早的测量是点,后来发展到线,而机器视觉可以一下子取到面,所以在单位时间内,机器视觉的数据采集量是巨大的,远远超过传统技术。他的精度也在不断的提高,所以将来会逐步取代传统技术,是一门新兴的,很有前途的方向。怎么学?我想,最好是有项目,一边做一边学效果会很好价格。这个相差很大,不同的项目几千到几百万都可能。做得好的,国内大恒,凌云等等,南方也有不少,说实话也说不上好,大家也都处于开始阶段,主要是代理国外产品,照搬国外技术。当然大家也都在尝试自己的研发,也有一些自主产品出现了。我相信自主产品成熟后,会大大推动机器视觉的发展,因为成本降低下来了。不给我分,我投诉你哈,好好努力,祝你成功哈!!!
2, 机器视觉技术的发展趋势
【机器视觉技术的发展趋势】机器视觉的概念起始于20世纪60年代,最先的应用来自"机器人"的研制。最早基于视觉的机器系统,先由视觉系统采集图像并进行处理,然后通过计算估计目标的位置来控制机器运动。1979年提出了视觉伺服概念,即可以将视觉信息用于连续反馈,提高视觉定位或追踪的精度。1、60年代:MIT(MassachusettsInstituteofTechnology)的Roberts通过计算机程序从数字图像中提取出诸如立方体、楔形体、棱柱体等多面体的三维结构,并对物体形状及物体的空间关系进行描述.他的研究工作开创了以理解三维场景为目的的三维计算机视觉研究。2、70年代:首次提出较为完整的视觉理论,已经出现了一些视觉应用系统.70年代中期,MIT人工智能(ArtificialIntelligence)实验室正式开设"机器视觉"课程。1973年MITAILab吸引了国际上许多知名学者参与视觉理论、算法、系统设计的研究,D.Marr教授就是其中的一位.他于1973年应邀在MITAILab领导一个以博士生为主体的研究小组,1977年提出了视觉计算理论(VisionComputationalTheory),该理论在80年代成为计算机视觉领域中的一个十分重要的理论框架。 3、80年代中期:计算机视觉获得蓬勃发展,新概念、新方法、新理论不断涌现。我国早期正式介绍计算机视觉的文献:计算机视觉:一个兴起的研究领域,计算机应用与软件,1984年第3期。4、90年代中期:深入发展、广泛应用的时期。 随着微处理器、半导体技术的进步,以及劳动力成本上升和高质量产品的需求,国外机器视觉于20世纪90年代进入高速发展期,广泛运用于工业控制领域。根据工业环境的不同,全球机器视觉主要分为以下两类: 一类是用于大规模或者高测试要求的生产线上,如包装、印刷、分拣等,或者在野外、核电等不适合人员工作的环境中,利用机器视觉方式代替传统人工测量或检试,同时实现人工条件下无法达到的可靠性、精确度及自动化程度。 另一类应用是必须用到高性能、精密机器视觉组件的专业设备制造,典型代表是最早带动整个机器视觉行业崛起的半导体制造设备。从上游晶圆加工制造的分类切割,到末端电路板印刷、贴片,这类设备都依赖于高精度的视觉测量以对运动部件进行导引与定位。例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上。 机器视觉发展至今,早已不是单一的应用产品。机器视觉的软硬件产品已逐渐成为生产制造各个阶段的必要部分,这就对于系统的集成性提出了更高的要求。工业自动化企业要求能够与测试或控制系统协同工作的一体化工业自动化系统,而非独立的视觉应用。在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
3, 计算机视觉的应用前景如何?可能有哪些不错的应用
应用范围从任务,比如工业机器视觉系统,比方说,检查瓶子上的生产线加速通过,研究为人工智能和计算机或机器人,可以理解他们周围的世界。计算机视觉和机器视觉领域有显著的重叠。计算机视觉涉及的被用于许多领域自动化图像分析的核心技术。机器视觉通常指的是结合自动图像分析与其他方法和技术,以提供自动检测和机器人指导在工业应用中的一个过程。在许多计算机视觉应用中,计算机被预编程,以解决特定的任务,但基于学习的方法现在正变得越来越普遍。计算机视觉应用的实例包括用于系统:(1)控制过程,比如,一个工业机器人 ;(2)导航,例如,通过自主汽车或移动机器人;(3)检测的事件,如,对视频监控和人数统计 ;(4)组织信息,例如,对于图像和图像序列的索引数据库;(5)造型对象或环境,如,医学图像分析系统或地形模型;(6)相互作用,例如,当输入到一个装置,用于计算机人的交互;(7)自动检测,例如,在制造业的应用程序。其中最突出的应用领域是医疗计算机视觉和医学图像处理。这个区域的特征的信息从图像数据中提取用于使患者的医疗诊断的目的。通常,图像数据是在形式显微镜图像,X射线图像,血管造影图像,超声图像和断层图像。的信息,可以从这样的图像数据中提取的一个例子是检测的肿瘤,动脉粥样硬化或其他恶性变化。它也可以是器官的尺寸,血流量等。这种应用领域还支持通过提供新的信息,医学研究的测量例如,对脑的结构,或约医学治疗的质量。计算机视觉在医疗领域的应用还包括增强是由人类的解释,例如超声图像或X射线图像,以降低噪声的影响的图像。
4, 机器视觉的应用有哪些?
机器视觉的应用:1、食品安全监测在流水化作业生产、产品质量检测方面,有时候需要工作人员观察、识别、发现生产环节中的错误和疏漏。无论人的责任心有多强,注意力有多集中,他都有可能会疲劳、疏忽、走神,造成瑕疵品流向市场。2、制造业制造业竞争加剧、成本压力迫使其重视生产效率质量将促进机器视觉技术的应用。为了提高生产效率,降低人力成本,工业生产和管理中的某些人工环节正逐渐被机器代替。机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。同时,机器视觉技术还能在超标准排放烟尘、污水等方面发挥作用。利用机器视觉,能够及时发现机房及生产车间的的火灾、烟雾等异常情况。利用机器视觉中的面相检测、人脸识别技术,可以帮助企业加强出入口的控制和管理,提高管理水平,降低管理成本。3、太阳能、交通监控近年来新兴行业的发展给机器视觉市场也带来了新的市场空间。在太阳能领域,太阳能电池和模块生产者使用机器视觉来检测产品、识别和跟踪产品以及装配产品。在交通监控领域,可以利用车牌识别技术、图像分析技术,自动识别车牌,发现违章停车、逆行、发现交通肇事车辆等。此外,如地质灾害对地震预防、山体滑坡、泥石流、火山喷发的发现识别、防范,水文监测对河流水文状况的观测等领域机器视觉技术都有巨大空间有待挖掘。未来的市场前景:传统制造业面临新的颠覆,转型升级将给中国自动化行业带来巨大的市场机遇。而机器视觉作为自动化界高智能化产品,未来具有巨大的发展潜力。中国的电子制造和代工厂商过去几年正在采购大量自动化设备取代人工,以应对中国愈演愈烈的缺工现象,未来几年这一现象将达到高潮。台资工厂纷纷选择提高自动化程度,其自动化换装高潮将在未来2-3年内到来,必将为机器视觉产品在该行业的应用带来新的增长点。据一项权威发布的行业预测报告,中国机器视觉行业的市场规模将持续增长,在2015年将达到30亿元,而在2016年将达到38亿元,到2018年以前达到50亿美元。
相关概念
视觉
视觉(vision)是一个生理学词汇。光作用于视觉器官,使其感受细胞兴奋,其信息经视觉神经系统加工后便产生。通过视觉,人和动物感知外界物体的大小、明暗、颜色、动静,获得对机体生存具有重要意义的各种信息,至少有80%以上的外界信息经视觉获得,视觉是人最重要的感觉。
机器
机器是由各种金属和非金属部件组装成的装置,消耗能源,可以运转、做功。机器一般由零件、部件组成一个整体,或者由几个独立机器构成联合体,凡用来完成有用功的机器称为工作机,如各种机床、起重机、纺织机、发电机等。
计算机
电子计算机(electronic computer),通称电脑,简称计算机(computer),是现代的一种利用电子技术和相关原理根据一系列指令来对数据进行处理的机器。电脑可以分为两部分:软件系统和硬件系统。第一台电脑是1946年2月15日在美国宾夕法尼亚大学诞生的ENIAC通用电子计算机。计算机所相关的技术研究叫计算机科学,以数据为核心的研究称为信息技术。人们把没有安装任何软件的计算机称为裸机。随着科技的发展,现在新出现一些新型计算机有:生物计算机、光子计算机、量子计算机等。